AlphaKnockout (Gene Targeting Expert System) is made possible by utilizing the computing power of Milkyway-2 of National Super Computer Center in Guangzhou, the super machine rated by TOP500 ranking as the top 1/top 2 world’s most powerful computer for the past 4 consecutive years @ The first ever photograph of light as both a particle and wave – March 2, 2015, Ecole Polytechnique Federale de Lausanne @ Very Important Links, Websites and Images of the World

Do the downloads!! Share!! The diffusion of very important information and knowledge is essential for the world progress always!! Thanks!!

  • – > Mestrado – Dissertation – Tabelas, Figuras e Gráficos – Tables, Figures and Graphics´´My´´ Dissertation @ #Innovation #energy #life #health #Countries #Time #Researches #Reference #Graphics #Ages #Age #Mice #People #Person #Mouse #Genetics #PersonalizedMedicine #Diagnosis #Prognosis #Treatment #Disease #UnknownDiseases #Future #VeryEfficientDrugs #VeryEfficientVaccines #VeryEfficientTherapeuticalSubstances #Tests #Laboratories #Investments #Details #HumanLongevity #DNA #Cell #Memory #Physiology #Nanomedicine #Nanotechnology #Biochemistry #NewMedicalDevices #GeneticEngineering #Internet #History #Science #World

Pathol Res Pract. 2012 Jul 15;208(7):377-81. doi: 10.1016/j.prp.2012.04.006. Epub 2012 Jun 8.

The influence of physical activity in the progression of experimental lung cancer in mice

Renato Batista Paceli 1Rodrigo Nunes CalCarlos Henrique Ferreira dos SantosJosé Antonio CordeiroCassiano Merussi NeivaKazuo Kawano NagaminePatrícia Maluf Cury


GRUPO_AF1GROUP AFA1 – Aerobic Physical Activity – Atividade Física Aeróbia – ´´My´´ Dissertation – Faculty of Medicine of Sao Jose do Rio Preto

GRUPO AFAN 1GROUP AFAN1 – Anaerobic Physical ActivityAtividade Física Anaeróbia – ´´My´´ Dissertation – Faculty of Medicine of Sao Jose do Rio Preto

GRUPO_AF2GROUP AFA2 – Aerobic Physical ActivityAtividade Física Aeróbia – ´´My´´ Dissertation – Faculty of Medicine of Sao Jose do Rio Preto

GRUPO AFAN 2GROUP AFAN 2 – Anaerobic Physical ActivityAtividade Física Anaeróbia´´My´´ Dissertation – Faculty of Medicine of Sao Jose do Rio Preto

Slides – mestrado´´My´´ Dissertation – Faculty of Medicine of Sao Jose do Rio Preto



Avaliação da influência da atividade física aeróbia e anaeróbia na progressão do câncer de pulmão experimental – Summary – Resumo´´My´´ Dissertation Faculty of Medicine of Sao Jose do Rio Preto


Lung cancer is one of the most incident neoplasms in the world, representing the main cause of mortality for cancer. Many epidemiologic studies have suggested that physical activity may reduce the risk of lung cancer, other works evaluate the effectiveness of the use of the physical activity in the suppression, remission and reduction of the recurrence of tumors. The aim of this study was to evaluate the effects of aerobic and anaerobic physical activity in the development and the progression of lung cancer. Lung tumors were induced with a dose of 3mg of urethane/kg, in 67 male Balb – C type mice, divided in three groups: group 1_24 mice treated with urethane and without physical activity; group 2_25 mice with urethane and subjected to aerobic swimming free exercise; group 3_18 mice with urethane, subjected to anaerobic swimming exercise with gradual loading 5-20% of body weight. All the animals were sacrificed after 20 weeks, and lung lesions were analyzed. The median number of lesions (nodules and hyperplasia) was 3.0 for group 1, 2.0 for group 2 and 1.5-3 (p=0.052). When comparing only the presence or absence of lesion, there was a decrease in the number of lesions in group 3 as compared with group 1 (p=0.03) but not in relation to group 2. There were no metastases or other changes in other organs. The anaerobic physical activity, but not aerobic, diminishes the incidence of experimental lung tumors.

@ ´´In biology, a gene is a sequence of nucleotides in DNA or RNA that encodes the synthesis of a gene product, either RNA or protein. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.´´ & ´´These smartphones and tablets run on a variety of operating systems and recently became the dominant computing device on the market.[93] These are powered by System on a Chip (SoCs), which are complete computers on a microchip the size of a coin.[91] The term hardware covers all of those parts of a computer that are tangible physical objects. Circuits, computer chips, graphic cards, sound cards, memory (RAM), motherboard, displays, power supplies, cables, keyboards, printers and “mice” input devices are all hardware. A general purpose computer has four main components: the arithmetic logic unit (ALU), the control unit, the memory, and the input and output devices (collectively termed I/O).´´

Acknowledgement: AlphaKnockout is made possible by utilizing the computing power of Milkyway-2 of National Super Computer Center in Guangzhou, the super machine rated by TOP500 ranking as the top 1/top 2 world’s most powerful computer for the past 4 consecutive years.Search                                                                       Mouse (Mus musculus)                                                                                                       Rat (Rattus norvegicus)                                                                                                   KO (CRISPR/Cas 9)                                     cKO                                         (CRISPR/Cas 9)                                                                          cKO (ES)                                                                       for SearchCopyright © 2019 Cyagen Biosciences. All rights reserved. 备案号和版权所有: 粤ICP备17037667号-1

Tel:800-921-8930 or +1 408-969-0306 (Int’l) (8am-6pm Pacific Time) (Animal Model Services) (Cell Products and Services)

Search by keyword/lot number/product name



Search by keyword/lot number/product name

  1. Home
  2. Community
  3. Blog
  4. AlphaKnockout – Gene Targeting Expert System

AlphaKnockout – Gene Targeting Expert System

Sep 06, 2018Share

Genetically modified mice generated by gene targeting technologies such as ES targeting or CRISPR/Cas9 have been widely used to study gene functions and human diseases. However, even for sophisticated life scientists, it takes many hours’ hard research to come up with a good gene targeting strategy. Cyagen’s gene targeting AI (artificial intelligent) expert system - AlphaKnockout can help you overcome these limitations with new features: fast, intelligent, reliable, reproducible and free.

Let AlphaKnockout accelerate your research Now!

In addition to using the AlphaKnockout to design the gene editing strategy, Cyagen’s TurboKnockout® gene targeting technology, the fastest ES-cell based gene targeting platform in the world, allows you to generate conditional knockout/knockin mouse model.

Constructing mouse model by TurboKnockout® can make you enjoy these benefits:

  • Affordable price: Only $15,000 to get your desired model.
  • Free Cre mice & cryopreservation of strains.
  • No off-target effects.
  • As fast as 6 months.

Latest Promotions

20% OFF plus cryopreservation
TurboKnockout ES cell-based cKO and KI mice, only $25,240 per line, 6-8 months, 3F1 mutants.
CRISPR-based KI (any locus) mice, only $21,648 per line, 6 months, 3F1 mutants.
CRISPR-based point mutation mice, only $16,875 per line, 6 months, 3F1 mutants.

30% OFF plus cryopreservation
CRISPR-based Rosa26 KI mice, only $16,875 per line, 6 months, 3F1 mutants.

40% OFF plus cryopreservation
CRISPR-based constitutive KO mice, only $9,563 per line, 6 months, 3F1 mutants.

Recent Posts:

【Want a publication in high-impact Journals】A super competent ES cell line gets you there!I am a Conditional Knockout

  • Subscribe NowNameEmailSubscribe
  • Contact UsWe will respond to you in 1-2 business days.**                                                                              –Subject–                                                                                                                   Animal Model Generation                                                                                                                   Cell Products and Services                                                                                                                   Vector Construction                                                                                                                   Virus Packaging                                                                                                                   BAC Modification (Recombineering)                                                                                                                   Breeding or Cryopreservation Services                                                                                                                   Other                                                                      ** * Submit

Cyagen US Inc.



About Us

Copyright © 2019 Cyagen Biosciences. All rights reserved.

Online Service

Design Your Model

Save up to 25%on all custom animal modelsTurboKnockout® MicecKO | cKI | LFKI | HumanizedPiggyBac TransgenicRats | Mice | Mouse EmbryosDesign Your ModelFREE Projects Strategies InstantlyStem Cells and ProductsHigh qualityPromotions

Technical Bulletins


Find publications relevant to your research:Citation SearchCyagen US Inc.



About Us

Copyright © 2019 Cyagen Biosciences. All rights reserved.

Online Service



Search by keyword/lot number/product name

PiggyBac Transgenic

Save up to 25%on all custom animal modelsTurboKnockout® MicecKO | cKI | LFKI | HumanizedPiggyBac TransgenicRats | Mice | Mouse EmbryosDesign Your ModelFREE Projects Strategies InstantlyStem Cells and ProductsHigh qualityPromotions

Technical Bulletins


Find publications relevant to your research:Citation SearchCyagen US Inc.



About Us

Copyright © 2019 Cyagen Biosciences. All rights reserved.

Online Service



Search by keyword/lot number/product name

TurboKnockout® Mice

Save up to 25%on all custom animal modelsTurboKnockout® MicecKO | cKI | LFKI | HumanizedPiggyBac TransgenicRats | Mice | Mouse EmbryosDesign Your ModelFREE Projects Strategies InstantlyStem Cells and ProductsHigh qualityPromotions

Technical Bulletins


Find publications relevant to your research:Citation SearchCyagen US Inc.



About Us

Copyright © 2019 Cyagen Biosciences. All rights reserved.

Online Service



Search by keyword/lot number/product name


Save up to 25%on all custom animal modelsTurboKnockout® MicecKO | cKI | LFKI | HumanizedPiggyBac TransgenicRats | Mice | Mouse EmbryosDesign Your ModelFREE Projects Strategies InstantlyStem Cells and ProductsHigh qualityPromotions

Technical Bulletins


Find publications relevant to your research:Citation SearchCyagen US Inc.



About Us

Copyright © 2019 Cyagen Biosciences. All rights reserved.

Online Service



Search by keyword/lot number/product name

Stem Cells and Products

Save up to 25%on all custom animal modelsTurboKnockout® MicecKO | cKI | LFKI | HumanizedPiggyBac TransgenicRats | Mice | Mouse EmbryosDesign Your ModelFREE Projects Strategies InstantlyStem Cells and ProductsHigh qualityPromotions

Technical Bulletins


Find publications relevant to your research:Citation SearchCyagen US Inc.



About Us

Copyright © 2019 Cyagen Biosciences. All rights reserved.

Online Service

This is a good article. Click here for more information.


From Wikipedia, the free encyclopediaJump to navigationJump to searchThis article is about the heritable unit for transmission of biological traits. For other uses, see Gene (disambiguation).

Chromosome(107 – 1010 bp)DNAGene(103 – 106 bp )FunctionThe image above contains clickable linksA gene is a region of DNA that encodes function. A chromosome consists of a long strand of DNA containing many genes. A human chromosome can have up to 500 million base pairs of DNA with thousands of genes.

In biology, a gene is a sequence of nucleotides in DNA or RNA that encodes the synthesis of a gene product, either RNA or protein.

During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism’s offspring is the basis of the inheritance of phenotypic trait. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gene–environment interactions. Some genetic traits are instantly visible, such as eye color or the number of limbs, and some are not, such as blood type, risk for specific diseases, or the thousands of basic biochemical processes that constitute life.

Genes can acquire mutations in their sequence, leading to different variants, known as alleles, in the population. These alleles encode slightly different versions of a protein, which cause different phenotypical traits. Usage of the term “having a gene” (e.g., “good genes,” “hair colour gene”) typically refers to containing a different allele of the same, shared gene. Genes evolve due to natural selection / survival of the fittest and genetic drift of the alleles.

The concept of a gene continues to be refined as new phenomena are discovered.[1] For example, regulatory regions of a gene can be far removed from its coding regions, and coding regions can be split into several exons. Some viruses store their genome in RNA instead of DNA and some gene products are functional non-coding RNAs. Therefore, a broad, modern working definition of a gene is any discrete locus of heritable, genomic sequence which affect an organism’s traits by being expressed as a functional product or by regulation of gene expression.[2][3]

The term gene was introduced by Danish botanist, plant physiologist and geneticist Wilhelm Johannsen in 1909.[4] It is inspired by the ancient Greek: γόνος, gonos, that means offspring and procreation.



Gregor MendelMain article: History of genetics

Discovery of discrete inherited units[edit]

The existence of discrete inheritable units was first suggested by Gregor Mendel (1822–1884).[5] From 1857 to 1864, in Brno (Czech Republic), he studied inheritance patterns in 8000 common edible pea plants, tracking distinct traits from parent to offspring. He described these mathematically as 2n combinations where n is the number of differing characteristics in the original peas. Although he did not use the term gene, he explained his results in terms of discrete inherited units that give rise to observable physical characteristics. This description prefigured Wilhelm Johannsen‘s distinction between genotype (the genetic material of an organism) and phenotype (the observable traits of that organism). Mendel was also the first to demonstrate independent assortment, the distinction between dominant and recessive traits, the distinction between a heterozygote and homozygote, and the phenomenon of discontinuous inheritance.

Prior to Mendel’s work, the dominant theory of heredity was one of blending inheritance, which suggested that each parent contributed fluids to the fertilisation process and that the traits of the parents blended and mixed to produce the offspring. Charles Darwin developed a theory of inheritance he termed pangenesis, from Greek pan (“all, whole”) and genesis (“birth”) / genos (“origin”).[6][7] Darwin used the term gemmule to describe hypothetical particles that would mix during reproduction.

Mendel’s work went largely unnoticed after its first publication in 1866, but was rediscovered in the late 19th century by Hugo de VriesCarl Correns, and Erich von Tschermak, who (claimed to have) reached similar conclusions in their own research.[8] Specifically, in 1889, Hugo de Vries published his book Intracellular Pangenesis,[9] in which he postulated that different characters have individual hereditary carriers and that inheritance of specific traits in organisms comes in particles. De Vries called these units “pangenes” (Pangens in German), after Darwin’s 1868 pangenesis theory.

Sixteen years later, in 1905, Wilhelm Johannsen introduced the term ‘gene’[4] and William Bateson that of ‘genetics[10] while Eduard Strasburger, amongst others, still used the term ‘pangene’ for the fundamental physical and functional unit of heredity.[11]

Discovery of DNA[edit]

Advances in understanding genes and inheritance continued throughout the 20th century. Deoxyribonucleic acid (DNA) was shown to be the molecular repository of genetic information by experiments in the 1940s to 1950s.[12][13] The structure of DNA was studied by Rosalind Franklin and Maurice Wilkins using X-ray crystallography, which led James D. Watson and Francis Crick to publish a model of the double-stranded DNA molecule whose paired nucleotide bases indicated a compelling hypothesis for the mechanism of genetic replication.[14][15]

In the early 1950s the prevailing view was that the genes in a chromosome acted like discrete entities, indivisible by recombination and arranged like beads on a string. The experiments of Benzer using mutants defective in the rII region of bacteriophage T4 (1955–1959) showed that individual genes have a simple linear structure and are likely to be equivalent to a linear section of DNA.[16][17]

Collectively, this body of research established the central dogma of molecular biology, which states that proteins are translated from RNA, which is transcribed from DNA. This dogma has since been shown to have exceptions, such as reverse transcription in retroviruses. The modern study of genetics at the level of DNA is known as molecular genetics.

In 1972, Walter Fiers and his team were the first to determine the sequence of a gene: that of Bacteriophage MS2 coat protein.[18] The subsequent development of chain-termination DNA sequencing in 1977 by Frederick Sanger improved the efficiency of sequencing and turned it into a routine laboratory tool.[19] An automated version of the Sanger method was used in early phases of the Human Genome Project.[20]

Modern synthesis and its successors[edit]

Main article: Modern synthesis (20th century)

The theories developed in the early 20th century to integrate Mendelian genetics with Darwinian evolution are called the modern synthesis, a term introduced by Julian Huxley.[21]

Evolutionary biologists have subsequently modified this concept, such as George C. Williams‘ gene-centric view of evolution. He proposed an evolutionary concept of the gene as a unit of natural selection with the definition: “that which segregates and recombines with appreciable frequency.”[22]:24 In this view, the molecular gene transcribes as a unit, and the evolutionary gene inherits as a unit. Related ideas emphasizing the centrality of genes in evolution were popularized by Richard Dawkins.[23][24]

Molecular basis[edit]

Main article: DNAThe chemical structure of a four base pair fragment of a DNAdouble helix. The sugarphosphate backbone chains run in opposite directions with the bases pointing inwards, base-pairingA to T and C to G with hydrogen bonds.


The vast majority of organisms encode their genes in long strands of DNA (deoxyribonucleic acid). DNA consists of a chain made from four types of nucleotide subunits, each composed of: a five-carbon sugar (2-deoxyribose), a phosphate group, and one of the four bases adeninecytosineguanine, and thymine.[25]:2.1

Two chains of DNA twist around each other to form a DNA double helix with the phosphate-sugar backbone spiralling around the outside, and the bases pointing inwards with adenine base pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because adenine and thymine align to form two hydrogen bonds, whereas cytosine and guanine form three hydrogen bonds. The two strands in a double helix must therefore be complementary, with their sequence of bases matching such that the adenines of one strand are paired with the thymines of the other strand, and so on.[25]:4.1

Due to the chemical composition of the pentose residues of the bases, DNA strands have directionality. One end of a DNA polymer contains an exposed hydroxyl group on the deoxyribose; this is known as the 3′ end of the molecule. The other end contains an exposed phosphate group; this is the 5′ end. The two strands of a double-helix run in opposite directions. Nucleic acid synthesis, including DNA replication and transcription occurs in the 5’→3′ direction, because new nucleotides are added via a dehydration reaction that uses the exposed 3′ hydroxyl as a nucleophile.[26]:27.2

The expression of genes encoded in DNA begins by transcribing the gene into RNA, a second type of nucleic acid that is very similar to DNA, but whose monomers contain the sugar ribose rather than deoxyribose. RNA also contains the base uracil in place of thymine. RNA molecules are less stable than DNA and are typically single-stranded. Genes that encode proteins are composed of a series of three-nucleotide sequences called codons, which serve as the “words” in the genetic “language”. The genetic code specifies the correspondence during protein translation between codons and amino acids. The genetic code is nearly the same for all known organisms.[25]:4.1


Fluorescent microscopy image of a human female karyotype, showing 23 pairs of chromosomes . The DNA is stained red, with regions rich in housekeeping genes further stained in green. The largest chromosomes are around 10 times the size of the smallest.[27]

The total complement of genes in an organism or cell is known as its genome, which may be stored on one or more chromosomes. A chromosome consists of a single, very long DNA helix on which thousands of genes are encoded.[25]:4.2 The region of the chromosome at which a particular gene is located is called its locus. Each locus contains one allele of a gene; however, members of a population may have different alleles at the locus, each with a slightly different gene sequence.

The majority of eukaryotic genes are stored on a set of large, linear chromosomes. The chromosomes are packed within the nucleus in complex with storage proteins called histones to form a unit called a nucleosome. DNA packaged and condensed in this way is called chromatin.[25]:4.2 The manner in which DNA is stored on the histones, as well as chemical modifications of the histone itself, regulate whether a particular region of DNA is accessible for gene expression. In addition to genes, eukaryotic chromosomes contain sequences involved in ensuring that the DNA is copied without degradation of end regions and sorted into daughter cells during cell division: replication originstelomeres and the centromere.[25]:4.2 Replication origins are the sequence regions where DNA replication is initiated to make two copies of the chromosome. Telomeres are long stretches of repetitive sequence that cap the ends of the linear chromosomes and prevent degradation of coding and regulatory regions during DNA replication. The length of the telomeres decreases each time the genome is replicated and has been implicated in the aging process.[28] The centromere is required for binding spindle fibres to separate sister chromatids into daughter cells during cell division.[25]:18.2

Prokaryotes (bacteria and archaea) typically store their genomes on a single large, circular chromosome. Similarly, some eukaryotic organelles contain a remnant circular chromosome with a small number of genes.[25]:14.4 Prokaryotes sometimes supplement their chromosome with additional small circles of DNA called plasmids, which usually encode only a few genes and are transferable between individuals. For example, the genes for antibiotic resistance are usually encoded on bacterial plasmids and can be passed between individual cells, even those of different species, via horizontal gene transfer.[29]

Whereas the chromosomes of prokaryotes are relatively gene-dense, those of eukaryotes often contain regions of DNA that serve no obvious function. Simple single-celled eukaryotes have relatively small amounts of such DNA, whereas the genomes of complex multicellular organisms, including humans, contain an absolute majority of DNA without an identified function.[30] This DNA has often been referred to as “junk DNA“. However, more recent analyses suggest that, although protein-coding DNA makes up barely 2% of the human genome, about 80% of the bases in the genome may be expressed, so the term “junk DNA” may be a misnomer.[3]

Structure and function[edit]


Regulatory sequenceRegulatory sequenceEnhancer/silencerPromoter5’UTROpen reading frame3’UTREnhancer/silencerProximalCoreStartStopTerminatorTranscriptionDNAExonExonExonIntronIntronPost-transcriptional
Protein coding region5’capPoly-A tailTranslationMature
ProteinThe image above contains clickable linksThe structure of a eukaryotic protein-coding gene. Regulatory sequence controls when and where expression occurs for the protein coding region (red). Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to remove introns (light grey) and add a 5′ cap and poly-A tail (dark grey). The mRNA 5′ and 3′ untranslated regions (blue) regulate translation into the final protein product.[31]Polycistronic operonRegulatory sequenceRegulatory sequenceEnhancerEnhancer/silencer/silencerOperatorPromoter5’UTRORFORFUTR3’UTRStartStartStopStopTerminatorTranscriptionDNARBSRBSProtein coding regionProtein coding regionmRNATranslationProteinThe image above contains clickable linksThe structure of a prokaryotic operon of protein-coding genes. Regulatory sequence controls when expression occurs for the multiple protein coding regions (red). Promoteroperator and enhancer regions (yellow) regulate the transcription of the gene into an mRNA. The mRNA untranslated regions (blue) regulate translation into the final protein products.[31]

The structure of a gene consists of many elements of which the actual protein coding sequence is often only a small part. These include DNA regions that are not transcribed as well as untranslated regions of the RNA.

Flanking the open reading frame, genes contain a regulatory sequence that is required for their expression. First, genes require a promoter sequence. The promoter is recognized and bound by transcription factors that recruit and help RNA polymerase bind to the region to initiate transcription.[25]:7.1 The recognition typically occurs as a consensus sequence like the TATA box. A gene can have more than one promoter, resulting in messenger RNAs (mRNA) that differ in how far they extend in the 5′ end.[32] Highly transcribed genes have “strong” promoter sequences that form strong associations with transcription factors, thereby initiating transcription at a high rate. Others genes have “weak” promoters that form weak associations with transcription factors and initiate transcription less frequently.[25]:7.2 Eukaryotic promoter regions are much more complex and difficult to identify than prokaryotic promoters.[25]:7.3

Additionally, genes can have regulatory regions many kilobases upstream or downstream of the open reading frame that alter expression. These act by binding to transcription factors which then cause the DNA to loop so that the regulatory sequence (and bound transcription factor) become close to the RNA polymerase binding site.[33] For example, enhancers increase transcription by binding an activator protein which then helps to recruit the RNA polymerase to the promoter; conversely silencers bind repressor proteins and make the DNA less available for RNA polymerase.[34]

The transcribed pre-mRNA contains untranslated regions at both ends which contain a ribosome binding siteterminator and start and stop codons.[35] In addition, most eukaryotic open reading frames contain untranslated introns which are removed before the exons are translated. The sequences at the ends of the introns dictate the splice sites to generate the final mature mRNA which encodes the protein or RNA product.[36]

Many prokaryotic genes are organized into operons, with multiple protein-coding sequences that are transcribed as a unit.[37][38] The genes in an operon are transcribed as a continuous messenger RNA, referred to as a polycistronic mRNA. The term cistron in this context is equivalent to gene. The transcription of an operon’s mRNA is often controlled by a repressor that can occur in an active or inactive state depending on the presence of specific metabolites.[39] When active, the repressor binds to a DNA sequence at the beginning of the operon, called the operator region, and represses transcription of the operon; when the repressor is inactive transcription of the operon can occur (see e.g. Lac operon). The products of operon genes typically have related functions and are involved in the same regulatory network.[25]:7.3

Functional definitions[edit]

Defining exactly what section of a DNA sequence comprises a gene is difficult.[1] Regulatory regions of a gene such as enhancers do not necessarily have to be close to the coding sequence on the linear molecule because the intervening DNA can be looped out to bring the gene and its regulatory region into proximity. Similarly, a gene’s introns can be much larger than its exons. Regulatory regions can even be on entirely different chromosomes and operate in trans to allow regulatory regions on one chromosome to come in contact with target genes on another chromosome.[40][41]

Early work in molecular genetics suggested the concept that one gene makes one protein. This concept (originally called the one gene-one enzyme hypothesis) emerged from an influential 1941 paper by George Beadle and Edward Tatum on experiments with mutants of the fungus Neurospora crassa.[42] Norman Horowitz, an early colleague on the Neurospora research, reminisced in 2004 that “these experiments founded the science of what Beadle and Tatum called biochemical genetics. In actuality they proved to be the opening gun in what became molecular genetics and all the developments that have followed from that.”[43] The one gene-one protein concept has been refined since the discovery of genes that can encode multiple proteins by alternative splicing and coding sequences split in short section across the genome whose mRNAs are concatenated by trans-splicing.[3][44][45]

A broad operational definition is sometimes used to encompass the complexity of these diverse phenomena, where a gene is defined as a union of genomic sequences encoding a coherent set of potentially overlapping functional products.[10] This definition categorizes genes by their functional products (proteins or RNA) rather than their specific DNA loci, with regulatory elements classified as gene-associated regions.[10]

Gene expression[edit]

Main article: Gene expression

In all organisms, two steps are required to read the information encoded in a gene’s DNA and produce the protein it specifies. First, the gene’s DNA is transcribed to messenger RNA (mRNA).[25]:6.1 Second, that mRNA is translated to protein.[25]:6.2 RNA-coding genes must still go through the first step, but are not translated into protein.[46] The process of producing a biologically functional molecule of either RNA or protein is called gene expression, and the resulting molecule is called a gene product.

Genetic code[edit]

Schematic of a single-stranded RNA molecule illustrating a series of three-base codons. Each three-nucleotide codon corresponds to an amino acid when translated to protein

The nucleotide sequence of a gene’s DNA specifies the amino acid sequence of a protein through the genetic code. Sets of three nucleotides, known as codons, each correspond to a specific amino acid.[25]:6 The principle that three sequential bases of DNA code for each amino acid was demonstrated in 1961 using frameshift mutations in the rIIB gene of bacteriophage T4[47] (see Crick, Brenner et al. experiment).

Additionally, a “start codon“, and three “stop codons” indicate the beginning and end of the protein coding region. There are 64 possible codons (four possible nucleotides at each of three positions, hence 43 possible codons) and only 20 standard amino acids; hence the code is redundant and multiple codons can specify the same amino acid. The correspondence between codons and amino acids is nearly universal among all known living organisms.[48]


Transcription produces a single-stranded RNA molecule known as messenger RNA, whose nucleotide sequence is complementary to the DNA from which it was transcribed.[25]:6.1 The mRNA acts as an intermediate between the DNA gene and its final protein product. The gene’s DNA is used as a template to generate a complementary mRNA. The mRNA matches the sequence of the gene’s DNA coding strand because it is synthesised as the complement of the template strand. Transcription is performed by an enzyme called an RNA polymerase, which reads the template strand in the 3′ to 5′ direction and synthesizes the RNA from 5′ to 3′. To initiate transcription, the polymerase first recognizes and binds a promoter region of the gene. Thus, a major mechanism of gene regulation is the blocking or sequestering the promoter region, either by tight binding by repressor molecules that physically block the polymerase, or by organizing the DNA so that the promoter region is not accessible.[25]:7

In prokaryotes, transcription occurs in the cytoplasm; for very long transcripts, translation may begin at the 5′ end of the RNA while the 3′ end is still being transcribed. In eukaryotes, transcription occurs in the nucleus, where the cell’s DNA is stored. The RNA molecule produced by the polymerase is known as the primary transcript and undergoes post-transcriptional modifications before being exported to the cytoplasm for translation. One of the modifications performed is the splicing of introns which are sequences in the transcribed region that do not encode protein. Alternative splicing mechanisms can result in mature transcripts from the same gene having different sequences and thus coding for different proteins. This is a major form of regulation in eukaryotic cells and also occurs in some prokaryotes.[25]:7.5[49]


Protein coding genes are transcribed to an mRNA intermediate, then translated to a functional protein. RNA-coding genes are transcribed to a functional non-coding RNA. (PDB3BSE1OBB3TRA​)

Translation is the process by which a mature mRNA molecule is used as a template for synthesizing a new protein.[25]:6.2 Translation is carried out by ribosomes, large complexes of RNA and protein responsible for carrying out the chemical reactions to add new amino acids to a growing polypeptide chain by the formation of peptide bonds. The genetic code is read three nucleotides at a time, in units called codons, via interactions with specialized RNA molecules called transfer RNA (tRNA). Each tRNA has three unpaired bases known as the anticodon that are complementary to the codon it reads on the mRNA. The tRNA is also covalently attached to the amino acid specified by the complementary codon. When the tRNA binds to its complementary codon in an mRNA strand, the ribosome attaches its amino acid cargo to the new polypeptide chain, which is synthesized from amino terminus to carboxyl terminus. During and after synthesis, most new proteins must fold to their active three-dimensional structure before they can carry out their cellular functions.[25]:3


Genes are regulated so that they are expressed only when the product is needed, since expression draws on limited resources.[25]:7 A cell regulates its gene expression depending on its external environment (e.g. available nutrientstemperature and other stresses), its internal environment (e.g. cell division cyclemetabolisminfection status), and its specific role if in a multicellular organism. Gene expression can be regulated at any step: from transcriptional initiation, to RNA processing, to post-translational modification of the protein. The regulation of lactose metabolism genes in E. coli (lac operon) was the first such mechanism to be described in 1961.[50]

RNA genes[edit]

A typical protein-coding gene is first copied into RNA as an intermediate in the manufacture of the final protein product.[25]:6.1 In other cases, the RNA molecules are the actual functional products, as in the synthesis of ribosomal RNA and transfer RNA. Some RNAs known as ribozymes are capable of enzymatic function, and microRNA has a regulatory role. The DNA sequences from which such RNAs are transcribed are known as non-coding RNA genes.[46]

Some viruses store their entire genomes in the form of RNA, and contain no DNA at all.[51][52] Because they use RNA to store genes, their cellular hosts may synthesize their proteins as soon as they are infected and without the delay in waiting for transcription.[53] On the other hand, RNA retroviruses, such as HIV, require the reverse transcription of their genome from RNA into DNA before their proteins can be synthesized. RNA-mediated epigenetic inheritance has also been observed in plants and very rarely in animals.[54]


Inheritance of a gene that has two different alleles (blue and white). The gene is located on an autosomal chromosome. The white allele is recessive to the blue allele. The probability of each outcome in the children’s generation is one quarter, or 25 percent.Main articles: Mendelian inheritance and Heredity

Organisms inherit their genes from their parents. Asexual organisms simply inherit a complete copy of their parent’s genome. Sexual organisms have two copies of each chromosome because they inherit one complete set from each parent.[25]:1

Mendelian inheritance[edit]

According to Mendelian inheritance, variations in an organism’s phenotype (observable physical and behavioral characteristics) are due in part to variations in its genotype (particular set of genes). Each gene specifies a particular trait with different sequence of a gene (alleles) giving rise to different phenotypes. Most eukaryotic organisms (such as the pea plants Mendel worked on) have two alleles for each trait, one inherited from each parent.[25]:20

Alleles at a locus may be dominant or recessive; dominant alleles give rise to their corresponding phenotypes when paired with any other allele for the same trait, whereas recessive alleles give rise to their corresponding phenotype only when paired with another copy of the same allele. If you know the genotypes of the organisms, you can determine which alleles are dominant and which are recessive. For example, if the allele specifying tall stems in pea plants is dominant over the allele specifying short stems, then pea plants that inherit one tall allele from one parent and one short allele from the other parent will also have tall stems. Mendel’s work demonstrated that alleles assort independently in the production of gametes, or germ cells, ensuring variation in the next generation. Although Mendelian inheritance remains a good model for many traits determined by single genes (including a number of well-known genetic disorders) it does not include the physical processes of DNA replication and cell division.[55][56]

DNA replication and cell division[edit]

The growth, development, and reproduction of organisms relies on cell division; the process by which a single cell divides into two usually identical daughter cells. This requires first making a duplicate copy of every gene in the genome in a process called DNA replication.[25]:5.2 The copies are made by specialized enzymes known as DNA polymerases, which “read” one strand of the double-helical DNA, known as the template strand, and synthesize a new complementary strand. Because the DNA double helix is held together by base pairing, the sequence of one strand completely specifies the sequence of its complement; hence only one strand needs to be read by the enzyme to produce a faithful copy. The process of DNA replication is semiconservative; that is, the copy of the genome inherited by each daughter cell contains one original and one newly synthesized strand of DNA.[25]:5.2

The rate of DNA replication in living cells was first measured as the rate of phage T4 DNA elongation in phage-infected E. coli and found to be impressively rapid.[57] During the period of exponential DNA increase at 37 °C, the rate of elongation was 749 nucleotides per second.

After DNA replication is complete, the cell must physically separate the two copies of the genome and divide into two distinct membrane-bound cells.[25]:18.2 In prokaryotes (bacteria and archaea) this usually occurs via a relatively simple process called binary fission, in which each circular genome attaches to the cell membrane and is separated into the daughter cells as the membrane invaginates to split the cytoplasm into two membrane-bound portions. Binary fission is extremely fast compared to the rates of cell division in eukaryotes. Eukaryotic cell division is a more complex process known as the cell cycle; DNA replication occurs during a phase of this cycle known as S phase, whereas the process of segregating chromosomes and splitting the cytoplasm occurs during M phase.[25]:18.1

Molecular inheritance[edit]

The duplication and transmission of genetic material from one generation of cells to the next is the basis for molecular inheritance, and the link between the classical and molecular pictures of genes. Organisms inherit the characteristics of their parents because the cells of the offspring contain copies of the genes in their parents’ cells. In asexually reproducing organisms, the offspring will be a genetic copy or clone of the parent organism. In sexually reproducing organisms, a specialized form of cell division called meiosis produces cells called gametes or germ cells that are haploid, or contain only one copy of each gene.[25]:20.2 The gametes produced by females are called eggs or ova, and those produced by males are called sperm. Two gametes fuse to form a diploid fertilized egg, a single cell that has two sets of genes, with one copy of each gene from the mother and one from the father.[25]:20

During the process of meiotic cell division, an event called genetic recombination or crossing-over can sometimes occur, in which a length of DNA on one chromatid is swapped with a length of DNA on the corresponding homologous non-sister chromatid. This can result in reassortment of otherwise linked alleles.[25]:5.5 The Mendelian principle of independent assortment asserts that each of a parent’s two genes for each trait will sort independently into gametes; which allele an organism inherits for one trait is unrelated to which allele it inherits for another trait. This is in fact only true for genes that do not reside on the same chromosome, or are located very far from one another on the same chromosome. The closer two genes lie on the same chromosome, the more closely they will be associated in gametes and the more often they will appear together (known as genetic linkage).[58] Genes that are very close are essentially never separated because it is extremely unlikely that a crossover point will occur between them.[58]

Molecular evolution[edit]

Main article: Molecular evolution


DNA replication is for the most part extremely accurate, however errors (mutations) do occur.[25]:7.6 The error rate in eukaryotic cells can be as low as 10−8 per nucleotide per replication,[59][60] whereas for some RNA viruses it can be as high as 10−3.[61] This means that each generation, each human genome accumulates 1–2 new mutations.[61] Small mutations can be caused by DNA replication and the aftermath of DNA damage and include point mutations in which a single base is altered and frameshift mutations in which a single base is inserted or deleted. Either of these mutations can change the gene by missense (change a codon to encode a different amino acid) or nonsense (a premature stop codon).[62] Larger mutations can be caused by errors in recombination to cause chromosomal abnormalities including the duplication, deletion, rearrangement or inversion of large sections of a chromosome. Additionally, DNA repair mechanisms can introduce mutational errors when repairing physical damage to the molecule. The repair, even with mutation, is more important to survival than restoring an exact copy, for example when repairing double-strand breaks.[25]:5.4

When multiple different alleles for a gene are present in a species’s population it is called polymorphic. Most different alleles are functionally equivalent, however some alleles can give rise to different phenotypic traits. A gene’s most common allele is called the wild type, and rare alleles are called mutants. The genetic variation in relative frequencies of different alleles in a population is due to both natural selection and genetic drift.[63] The wild-type allele is not necessarily the ancestor of less common alleles, nor is it necessarily fitter.

Most mutations within genes are neutral, having no effect on the organism’s phenotype (silent mutations). Some mutations do not change the amino acid sequence because multiple codons encode the same amino acid (synonymous mutations). Other mutations can be neutral if they lead to amino acid sequence changes, but the protein still functions similarly with the new amino acid (e.g. conservative mutations). Many mutations, however, are deleterious or even lethal, and are removed from populations by natural selection. Genetic disorders are the result of deleterious mutations and can be due to spontaneous mutation in the affected individual, or can be inherited. Finally, a small fraction of mutations are beneficial, improving the organism’s fitness and are extremely important for evolution, since their directional selection leads to adaptive evolution.[25]:7.6

Sequence homology[edit]

A sequence alignment, produced by ClustalO, of mammalian histone proteins

Genes with a most recent common ancestor, and thus a shared evolutionary ancestry, are known as homologs.[64] These genes appear either from gene duplication within an organism’s genome, where they are known as paralogous genes, or are the result of divergence of the genes after a speciation event, where they are known as orthologous genes,[25]:7.6 and often perform the same or similar functions in related organisms. It is often assumed that the functions of orthologous genes are more similar than those of paralogous genes, although the difference is minimal.[65][66]

The relationship between genes can be measured by comparing the sequence alignment of their DNA.[25]:7.6 The degree of sequence similarity between homologous genes is called conserved sequence. Most changes to a gene’s sequence do not affect its function and so genes accumulate mutations over time by neutral molecular evolution. Additionally, any selection on a gene will cause its sequence to diverge at a different rate. Genes under stabilizing selection are constrained and so change more slowly whereas genes under directional selection change sequence more rapidly.[67] The sequence differences between genes can be used for phylogenetic analyses to study how those genes have evolved and how the organisms they come from are related.[68][69]

Origins of new genes[edit]

Evolutionary fate of duplicate genes.

The most common source of new genes in eukaryotic lineages is gene duplication, which creates copy number variation of an existing gene in the genome.[70][71] The resulting genes (paralogs) may then diverge in sequence and in function. Sets of genes formed in this way compose a gene family. Gene duplications and losses within a family are common and represent a major source of evolutionary biodiversity.[72] Sometimes, gene duplication may result in a nonfunctional copy of a gene, or a functional copy may be subject to mutations that result in loss of function; such nonfunctional genes are called pseudogenes.[25]:7.6

“Orphan” genes, whose sequence shows no similarity to existing genes, are less common than gene duplicates. The human genome contains an estimate 18[73] to 60[74] genes with no identifiable homologs outside humans. Orphan genes arise primarily from either de novo emergence from previously non-coding sequence, or gene duplication followed by such rapid sequence change that the original relationship becomes undetectable.[75] De novo genes are typically shorter and simpler in structure than most eukaryotic genes, with few if any introns.[70] Over long evolutionary time periods, de novo gene birth may be responsible for a significant fraction of taxonomically-restricted gene families.[76]

Horizontal gene transfer refers to the transfer of genetic material through a mechanism other than reproduction. This mechanism is a common source of new genes in prokaryotes, sometimes thought to contribute more to genetic variation than gene duplication.[77] It is a common means of spreading antibiotic resistancevirulence, and adaptive metabolic functions.[29][78] Although horizontal gene transfer is rare in eukaryotes, likely examples have been identified of protist and alga genomes containing genes of bacterial origin.[79][80]


The genome is the total genetic material of an organism and includes both the genes and non-coding sequences.[81]

Number of genes[edit]

Representative genome sizes for plants (green), vertebrates (blue), invertebrates (red), fungus (yellow), bacteria (purple), and viruses (grey). An inset on the right shows the smaller genomes expanded 100-fold area-wise.[82][83][84][85][86][87][88][89]

The genome size, and the number of genes it encodes varies widely between organisms. The smallest genomes occur in viruses,[90] and viroids (which act as a single non-coding RNA gene).[91] Conversely, plants can have extremely large genomes,[92] with rice containing >46,000 protein-coding genes.[93] The total number of protein-coding genes (the Earth’s proteome) is estimated to be 5 million sequences.[94]

Although the number of base-pairs of DNA in the human genome has been known since the 1960s, the estimated number of genes has changed over time as definitions of genes, and methods of detecting them have been refined. Initial theoretical predictions of the number of human genes were as high as 2,000,000.[95] Early experimental measures indicated there to be 50,000–100,000 transcribed genes (expressed sequence tags).[96] Subsequently, the sequencing in the Human Genome Project indicated that many of these transcripts were alternative variants of the same genes, and the total number of protein-coding genes was revised down to ~20,000[89] with 13 genes encoded on the mitochondrial genome.[87] With the GENCODE annotation project, that estimate has continued to fall to 19,000.[97] Of the human genome, only 1–2% consists of protein-coding genes,[98] with the remainder being ‘noncoding’ DNA such as intronsretrotransposons, and noncoding RNAs.[98][99] Every multicellular organism has all its genes in each cell of its body but not every gene functions in every cell .

Essential genes[edit]

Main article: Essential geneGene functions in the minimal genome of the synthetic organismSyn 3.[100]

Essential genes are the set of genes thought to be critical for an organism’s survival.[101] This definition assumes the abundant availability of all relevant nutrients and the absence of environmental stress. Only a small portion of an organism’s genes are essential. In bacteria, an estimated 250–400 genes are essential for Escherichia coli and Bacillus subtilis, which is less than 10% of their genes.[102][103][104] Half of these genes are orthologs in both organisms and are largely involved in protein synthesis.[104] In the budding yeast Saccharomyces cerevisiae the number of essential genes is slightly higher, at 1000 genes (~20% of their genes).[105] Although the number is more difficult to measure in higher eukaryotes, mice and humans are estimated to have around 2000 essential genes (~10% of their genes).[106] The synthetic organism, Syn 3, has a minimal genome of 473 essential genes and quasi-essential genes (necessary for fast growth), although 149 have unknown function.[100]

Essential genes include housekeeping genes (critical for basic cell functions)[107] as well as genes that are expressed at different times in the organisms development or life cycle.[108] Housekeeping genes are used as experimental controls when analysing gene expression, since they are constitutively expressed at a relatively constant level.

Genetic and genomic nomenclature[edit]

Gene nomenclature has been established by the HUGO Gene Nomenclature Committee (HGNC), a committee of the Human Genome Organisation, for each known human gene in the form of an approved gene name and symbol (short-form abbreviation), which can be accessed through a database maintained by HGNC. Symbols are chosen to be unique, and each gene has only one symbol (although approved symbols sometimes change). Symbols are preferably kept consistent with other members of a gene family and with homologs in other species, particularly the mouse due to its role as a common model organism.[109]

Genetic engineering[edit]

Comparison of conventional plant breeding with transgenic and cisgenic genetic modification.Main article: Genetic engineering

Genetic engineering is the modification of an organism’s genome through biotechnology. Since the 1970s, a variety of techniques have been developed to specifically add, remove and edit genes in an organism.[110] Recently developed genome engineering techniques use engineered nuclease enzymes to create targeted DNA repair in a chromosome to either disrupt or edit a gene when the break is repaired.[111][112][113][114] The related term synthetic biology is sometimes used to refer to extensive genetic engineering of an organism.[115]

Genetic engineering is now a routine research tool with model organisms. For example, genes are easily added to bacteria[116] and lineages of knockout mice with a specific gene’s function disrupted are used to investigate that gene’s function.[117][118] Many organisms have been genetically modified for applications in agriculture, industrial biotechnology, and medicine.

For multicellular organisms, typically the embryo is engineered which grows into the adult genetically modified organism.[119] However, the genomes of cells in an adult organism can be edited using gene therapy techniques to treat genetic diseases.

See also[edit]



  1. Jump up to:a b Gericke, Niklas Markus; Hagberg, Mariana (5 December 2006). “Definition of historical models of gene function and their relation to students’ understanding of genetics”. Science & Education16 (7–8): 849–881. Bibcode:2007Sc&Ed..16..849Gdoi:10.1007/s11191-006-9064-4.
  2. ^ Pearson H (May 2006). “Genetics: what is a gene?”. Nature441(7092): 398–401. Bibcode:2006Natur.441..398Pdoi:10.1038/441398aPMID 16724031.
  3. Jump up to:a b c Pennisi E (June 2007). “Genomics. DNA study forces rethink of what it means to be a gene”. Science316 (5831): 1556–1557. doi:10.1126/science.316.5831.1556PMID 17569836.
  4. Jump up to:a b Johannsen, W. (1905). Arvelighedslærens elementer (“The Elements of Heredity”. Copenhagen). Rewritten, enlarged and translated into German as Elemente der exakten Erblichkeitslehre(Jena: Gustav Fischer, 1909; Scanned full text.
  5. ^ Noble D (September 2008). “Genes and causation”. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (Free full text)|format=requires |url= (help). 366 (1878): 3001–3015. Bibcode:2008RSPTA.366.3001Ndoi:10.1098/rsta.2008.0086PMID 18559318.
  6. ^ “genesis”Oxford English Dictionary (3rd ed.). Oxford University Press. September 2005. (Subscription or UK public library membership required.)
  7. ^ Magner, Lois N. (2002). A History of the Life Sciences (Third ed.). Marcel DekkerCRC Press. p. 371. ISBN 978-0-203-91100-6.
  8. ^ Henig, Robin Marantz (2000). The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, the Father of Genetics. Boston: Houghton Mifflin. pp. 1–9ISBN 978-0395-97765-1.
  9. ^ Vries, H. deIntracellulare Pangenese, Verlag von Gustav Fischer, Jena, 1889. Translated in 1908 from German to English by C. Stuart Gager as Intracellular Pangenesis, Open Court Publishing Co., Chicago, 1910
  10. Jump up to:a b c Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (June 2007). “What is a gene, post-ENCODE? History and updated definition”. Genome Research17 (6): 669–681. doi:10.1101/gr.6339607PMID 17567988.
  11. ^ Gager, C.S.Translator’s preface to Intracellular Pangenesis, p. viii.
  12. ^ Avery, OT; MacLeod, CM; McCarty, M (1944). “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III”The Journal of Experimental Medicine79 (2): 137–158. doi:10.1084/jem.79.2.137PMC 2135445PMID 19871359. Reprint: Avery, OT; MacLeod, CM; McCarty, M (1979). “Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III”The Journal of Experimental Medicine149 (2): 297–326. doi:10.1084/jem.149.2.297PMC 2184805PMID 33226.
  13. ^ Hershey, AD; Chase, M (1952). “Independent functions of viral protein and nucleic acid in growth of bacteriophage”The Journal of General Physiology36 (1): 39–56. doi:10.1085/jgp.36.1.39PMC 2147348PMID 12981234.
  14. ^ Judson, Horace (1979). The Eighth Day of Creation: Makers of the Revolution in Biology. Cold Spring Harbor Laboratory Press. pp. 51–169. ISBN 978-0-87969-477-7.
  15. ^ Watson, J.D.; Crick, FH (1953). “Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid” (PDF). Nature171 (4356): 737–738. Bibcode:1953Natur.171..737Wdoi:10.1038/171737a0PMID 13054692.
  16. ^ Benzer S (1955). “Fine Structure of a Genetic Region in Bacteriophage”Proc. Natl. Acad. Sci. U.S.A41 (6): 344–354. Bibcode:1955PNAS…41..344Bdoi:10.1073/pnas.41.6.344PMC 528093PMID 16589677.
  17. ^ Benzer S (1959). “On the Topology of the Genetic Fine Structure”Proc. Natl. Acad. Sci. U.S.A45 (11): 1607–1620. Bibcode:1959PNAS…45.1607Bdoi:10.1073/pnas.45.11.1607PMC 222769PMID 16590553.
  18. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W (May 1972). “Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein”. Nature237 (5350): 82–88. Bibcode:1972Natur.237…82Jdoi:10.1038/237082a0PMID 4555447.
  19. ^ Sanger, F; Nicklen, S; Coulson, AR (1977). “DNA sequencing with chain-terminating inhibitors”Proceedings of the National Academy of Sciences of the United States of America74 (12): 5463–5467. Bibcode:1977PNAS…74.5463Sdoi:10.1073/pnas.74.12.5463PMC 431765PMID 271968.
  20. ^ Adams, Jill U. (2008). “DNA Sequencing Technologies”Nature Education Knowledge. SciTable. Nature Publishing Group. 1 (1): 193.
  21. ^ Huxley, Julian (1942). Evolution: the Modern Synthesis. Cambridge, Massachusetts: MIT Press. ISBN 978-0262513661.
  22. ^ Williams, George C. (2001). Adaptation and Natural Selection a Critique of Some Current Evolutionary Thought (Online ed.). Princeton: Princeton University Press. ISBN 9781400820108.
  23. ^ Dawkins, Richard (1977). The selfish gene (Repr. (with corr.) ed.). London: Oxford University Press. ISBN 978-0-19-857519-1.
  24. ^ Dawkins, Richard (1989). The extended phenotype (Paperback ed.). Oxford: Oxford University Press. ISBN 978-0-19-286088-0.
  25. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah aiaj ak Alberts B, Johnson A, Lewis JRaff M, Roberts K, Walter P(2002). Molecular Biology of the Cell (Fourth ed.). New York: Garland Science. ISBN 978-0-8153-3218-3.
  26. ^ Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry (5th ed.). San Francisco: W.H. Freeman. ISBN 978-0-7167-4955-4.
  27. ^ Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R.; Cremer, Thomas (2005). “Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes”PLoS Biology3(5): e157. doi:10.1371/journal.pbio.0030157PMC 1084335PMID 15839726
  28. ^ Braig M, Schmitt CA (March 2006). “Oncogene-induced senescence: putting the brakes on tumor development”. Cancer Research66 (6): 2881–2884. doi:10.1158/0008-5472.CAN-05-4006PMID 16540631.
  29. Jump up to:a b Bennett, PM (March 2008). “Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria”British Journal of Pharmacology. 153 Suppl 1: S347–357. doi:10.1038/sj.bjp.0707607PMC 2268074PMID 18193080.
  30. ^ International Human Genome Sequencing Consortium (October 2004). “Finishing the euchromatic sequence of the human genome”. Nature431 (7011): 931–945. Bibcode:2004Natur.431..931Hdoi:10.1038/nature03001PMID 15496913.
  31. Jump up to:a b Shafee, Thomas; Lowe, Rohan (2017). “Eukaryotic and prokaryotic gene structure”. WikiJournal of Medicine4 (1). doi:10.15347/wjm/2017.002ISSN 2002-4436.
  32. ^ Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (July 2008). “Mapping and quantifying mammalian transcriptomes by RNA-Seq”. Nature Methods5 (7): 621–628. doi:10.1038/nmeth.1226PMID 18516045.
  33. ^ Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. (2013). “Enhancers: Five essential questions”Nature Reviews Genetics14 (4): 288–295. doi:10.1038/nrg3458PMC 4445073PMID 23503198.
  34. ^ Maston, G.A.; Evans, S.K.; Green, M.R. (2006). “Transcriptional Regulatory Elements in the Human Genome”. Annual Review of Genomics and Human Genetics7: 29–59. doi:10.1146/annurev.genom.7.080505.115623PMID 16719718.
  35. ^ Mignone, Flavio; Gissi, Carmela; Liuni, Sabino; Pesole, Graziano (28 February 2002). “Untranslated regions of mRNAs”Genome Biology3 (3): reviews0004. doi:10.1186/gb-2002-3-3-reviews0004ISSN 1465-6906PMC 139023PMID 11897027.
  36. ^ Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ (December 2012). “Introns in UTRs: why we should stop ignoring them”. BioEssays34 (12): 1025–1034. doi:10.1002/bies.201200073PMID 23108796.
  37. ^ Salgado, H.; Moreno-Hagelsieb, G.; Smith, T.; Collado-Vides, J. (2000). “Operons in Escherichia coli: Genomic analyses and predictions”Proceedings of the National Academy of Sciences97 (12): 6652–6657. Bibcode:2000PNAS…97.6652Sdoi:10.1073/pnas.110147297PMC 18690PMID 10823905.
  38. ^ Blumenthal, Thomas (November 2004). “Operons in eukaryotes”Briefings in Functional Genomics & Proteomics3(3): 199–211. doi:10.1093/bfgp/3.3.199ISSN 2041-2649PMID 15642184.
  39. ^ Jacob F, Monod J (1961). “Genetic regulatory mechanisms in the synthesis of proteins”. J. Mol. Biol3 (3): 318–356. doi:10.1016/S0022-2836(61)80072-7PMID 13718526.
  40. ^ Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (June 2005). “Interchromosomal associations between alternatively expressed loci”. Nature435 (7042): 637–645. Bibcode:2005Natur.435..637Sdoi:10.1038/nature03574PMID 15880101.
  41. ^ Williams, A; Spilianakis, CG; Flavell, RA (April 2010). “Interchromosomal association and gene regulation in trans”Trends in Genetics26 (4): 188–197. doi:10.1016/j.tig.2010.01.007PMC 2865229PMID 20236724.
  42. ^ Beadle GW, Tatum EL (1941). “Genetic Control of Biochemical Reactions in Neurospora”Proc. Natl. Acad. Sci. U.S.A27 (11): 499–506. Bibcode:1941PNAS…27..499Bdoi:10.1073/pnas.27.11.499PMC 1078370PMID 16588492.
  43. ^ Horowitz NH, Berg P, Singer M, Lederberg J, Susman M, Doebley J, Crow JF (2004). “A centennial: George W. Beadle, 1903–1989”Genetics166 (1): 1–10. doi:10.1534/genetics.166.1.1PMC 1470705PMID 15020400.
  44. ^ Marande W, Burger G (October 2007). “Mitochondrial DNA as a genomic jigsaw puzzle”. Science. AAAS. 318 (5849): 415. Bibcode:2007Sci…318..415Mdoi:10.1126/science.1148033PMID 17947575.
  45. ^ Parra G, Reymond A, Dabbouseh N, Dermitzakis ET, Castelo R, Thomson TM, Antonarakis SE, Guigó R (January 2006). “Tandem chimerism as a means to increase protein complexity in the human genome”Genome Research16 (1): 37–44. doi:10.1101/gr.4145906PMC 1356127PMID 16344564.
  46. Jump up to:a b Eddy SR (December 2001). “Non-coding RNA genes and the modern RNA world”. Nat. Rev. Genet2 (12): 919–929. doi:10.1038/35103511PMID 11733745.
  47. ^ Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (1961). “General nature of the genetic code for proteins”. Nature192 (4809): 1227–1232. doi:10.1038/1921227a0PMID 13882203.
  48. ^ Crick, Francis (1962). “The genetic code”Scientific American. WH Freeman and Company. 207 (4): 66–74. doi:10.1038/scientificamerican1062-66PMID 13882204.
  49. ^ Woodson SA (May 1998). “Ironing out the kinks: splicing and translation in bacteria”. Genes & Development12 (9): 1243–1247. doi:10.1101/gad.12.9.1243PMID 9573040.
  50. ^ Jacob FMonod J (June 1961). “Genetic regulatory mechanisms in the synthesis of proteins”. J Mol Biol3 (3): 318–356. doi:10.1016/S0022-2836(61)80072-7PMID 13718526.
  51. ^ Koonin, Eugene V.; Dolja, Valerian V.; Morris, T. Jack (January 1993). “Evolution and Taxonomy of Positive-Strand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences”. Critical Reviews in Biochemistry and Molecular Biology28 (5): 375–430. doi:10.3109/10409239309078440PMID 8269709.
  52. ^ Domingo, Esteban (2001). “RNA Virus Genomes”. eLSdoi:10.1002/9780470015902.a0001488.pub2ISBN 978-0470016176.
  53. ^ Domingo, E; Escarmís, C; Sevilla, N; Moya, A; Elena, SF; Quer, J; Novella, IS; Holland, JJ (June 1996). “Basic concepts in RNA virus evolution”. FASEB Journal10 (8): 859–864. doi:10.1096/fasebj.10.8.8666162PMID 8666162.
  54. ^ Morris, KV; Mattick, JS (June 2014). “The rise of regulatory RNA”Nature Reviews Genetics15 (6): 423–437. doi:10.1038/nrg3722PMC 4314111PMID 24776770.
  55. ^ Miko, Ilona (2008). “Gregor Mendel and the Principles of Inheritance”Nature Education Knowledge. SciTable. Nature Publishing Group. 1 (1): 134.
  56. ^ Chial, Heidi (2008). “Mendelian Genetics: Patterns of Inheritance and Single-Gene Disorders”Nature Education Knowledge. SciTable. Nature Publishing Group. 1 (1): 63.
  57. ^ McCarthy D, Minner C, Bernstein H, Bernstein C (1976). “DNA elongation rates and growing point distributions of wild-type phage T4 and a DNA-delay amber mutant”. J. Mol. Biol106 (4): 963–981. doi:10.1016/0022-2836(76)90346-6PMID 789903.
  58. Jump up to:a b Lobo, Ingrid; Shaw, Kelly (2008). “Discovery and Types of Genetic Linkage”Nature Education Knowledge. SciTable. Nature Publishing Group. 1 (1): 139.
  59. ^ Nachman MW, Crowell SL (September 2000). “Estimate of the mutation rate per nucleotide in humans”Genetics156 (1): 297–304. PMC 1461236PMID 10978293.
  60. ^ Roach JC, Glusman G, Smit AF, et al. (April 2010). “Analysis of genetic inheritance in a family quartet by whole-genome sequencing”Science328 (5978): 636–639. Bibcode:2010Sci…328..636Rdoi:10.1126/science.1186802PMC 3037280PMID 20220176.
  61. Jump up to:a b Drake JW, Charlesworth B, Charlesworth D, Crow JF (April 1998). “Rates of spontaneous mutation”Genetics148 (4): 1667–1686. PMC 1460098PMID 9560386.
  62. ^ “What kinds of gene mutations are possible?”Genetics Home Reference. United States National Library of Medicine. 11 May 2015. Retrieved 19 May 2015.
  63. ^ Andrews, Christine A. (2010). “Natural Selection, Genetic Drift, and Gene Flow Do Not Act in Isolation in Natural Populations”Nature Education Knowledge. SciTable. Nature Publishing Group. 3 (10): 5.
  64. ^ Patterson, C (November 1988). “Homology in classical and molecular biology”. Molecular Biology and Evolution5 (6): 603–625. doi:10.1093/oxfordjournals.molbev.a040523PMID 3065587.
  65. ^ Studer, RA; Robinson-Rechavi, M (May 2009). “How confident can we be that orthologs are similar, but paralogs differ?”Trends in Genetics25 (5): 210–6. doi:10.1016/j.tig.2009.03.004PMID 19368988.
  66. ^ Altenhoff, AM; Studer, RA; Robinson-Rechavi, M; Dessimoz, C (2012). “Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs”PLOS Computational Biology8 (5): e1002514. Bibcode:2012PLSCB…8E2514Adoi:10.1371/journal.pcbi.1002514PMC 3355068PMID 22615551
  67. ^ Nosil, Patrik; Funk, Daniel J.; Ortiz-Barrientos, Daniel (February 2009). “Divergent selection and heterogeneous genomic divergence”. Molecular Ecology18 (3): 375–402. doi:10.1111/j.1365-294X.2008.03946.xPMID 19143936.
  68. ^ Emery, Laura. “Introduction to Phylogenetics”. EMBL-EBI. Retrieved 19 May 2015.
  69. ^ Mitchell, Matthew W.; Gonder, Mary Katherine (2013). “Primate Speciation: A Case Study of African Apes”Nature Education Knowledge. SciTable. Nature Publishing Group. 4 (2): 1.
  70. Jump up to:a b Guerzoni, D; McLysaght, A (November 2011). “De novo origins of human genes”PLOS Genetics7 (11): e1002381. doi:10.1371/journal.pgen.1002381PMC 3213182PMID 22102832
  71. ^ Reams, AB; Roth, JR (2 February 2015). “Mechanisms of gene duplication and amplification”Cold Spring Harbor Perspectives in Biology7 (2): a016592. doi:10.1101/cshperspect.a016592PMC 4315931PMID 25646380.
  72. ^ Demuth, JP; De Bie, T; Stajich, JE; Cristianini, N; Hahn, MW (20 December 2006). “The evolution of mammalian gene families”PLoS ONE1 (1): e85. Bibcode:2006PLoSO…1…85Ddoi:10.1371/journal.pone.0000085PMC 1762380PMID 17183716
  73. ^ Knowles, DG; McLysaght, A (October 2009). “Recent de novo origin of human protein-coding genes”Genome Research19(10): 1752–1759. doi:10.1101/gr.095026.109PMC 2765279PMID 19726446.
  74. ^ Wu, DD; Irwin, DM; Zhang, YP (November 2011). “De novo origin of human protein-coding genes”PLOS Genetics7 (11): e1002379. doi:10.1371/journal.pgen.1002379PMC 3213175PMID 22102831
  75. ^ McLysaght, Aoife; Guerzoni, Daniele (31 August 2015). “New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation”Philosophical Transactions of the Royal Society B: Biological Sciences370 (1678): 20140332. doi:10.1098/rstb.2014.0332PMC 4571571PMID 26323763.
  76. ^ Neme, Rafik; Tautz, Diethard (2013). “Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution”BMC Genomics14 (1): 117. doi:10.1186/1471-2164-14-117PMC 3616865PMID 23433480.
  77. ^ Treangen, TJ; Rocha, EP (27 January 2011). “Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes”PLOS Genetics7 (1): e1001284. doi:10.1371/journal.pgen.1001284PMC 3029252PMID 21298028
  78. ^ Ochman, H; Lawrence, JG; Groisman, EA (18 May 2000). “Lateral gene transfer and the nature of bacterial innovation”. Nature405 (6784): 299–304. Bibcode:2000Natur.405..299Odoi:10.1038/35012500PMID 10830951.
  79. ^ Keeling, PJ; Palmer, JD (August 2008). “Horizontal gene transfer in eukaryotic evolution”. Nature Reviews Genetics9 (8): 605–618. doi:10.1038/nrg2386PMID 18591983.
  80. ^ Schönknecht, G; Chen, WH; Ternes, CM; Barbier, GG; Shrestha, RP; Stanke, M; Bräutigam, A; Baker, BJ; Banfield, JF; Garavito, RM; Carr, K; Wilkerson, C; Rensing, SA; Gagneul, D; Dickenson, NE; Oesterhelt, C; Lercher, MJ; Weber, AP (8 March 2013). “Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote”Science339 (6124): 1207–1210. Bibcode:2013Sci…339.1207Sdoi:10.1126/science.1231707PMID 23471408.
  81. ^ Ridley, M. (2006). Genome. New York, NY: Harper Perennial. ISBN 0-06-019497-9
  82. ^ Watson, JD, Baker TA, Bell SP, Gann A, Levine M, Losick R. (2004). “Ch9-10”, Molecular Biology of the Gene, 5th ed., Peason Benjamin Cummings; CSHL Press.
  83. ^ “Integr8 – A.thaliana Genome Statistics”.
  84. ^ “Understanding the Basics”The Human Genome Project. Retrieved 26 April 2015.
  85. ^ “WS227 Release Letter”. WormBase. 10 August 2011. Archived from the original on 28 November 2013. Retrieved 19 November 2013.
  86. ^ Yu, J. (5 April 2002). “A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica)”. Science296 (5565): 79–92. Bibcode:2002Sci…296…79Ydoi:10.1126/science.1068037PMID 11935017.
  87. Jump up to:a b Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H. L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B. A.; Sanger, F.; Schreier, P.H.; Smith, A.J.H.; Staden, R.; Young, I.G. (9 April 1981). “Sequence and organization of the human mitochondrial genome”. Nature290 (5806): 457–465. Bibcode:1981Natur.290..457Adoi:10.1038/290457a0PMID 7219534.
  88. ^ Adams, M.D. (24 March 2000). “The Genome Sequence of Drosophila melanogaster”. Science287 (5461): 2185–2195. Bibcode:2000Sci…287.2185.CiteSeerX 10731132.
  89. Jump up to:a b Pertea, Mihaela; Salzberg, Steven L (2010). “Between a chicken and a grape: estimating the number of human genes”Genome Biology11 (5): 206. doi:10.1186/gb-2010-11-5-206PMC 2898077PMID 20441615.
  90. ^ Belyi, V.A.; Levine, A.J.; Skalka, A.M. (22 September 2010). “Sequences from Ancestral Single-Stranded DNA Viruses in Vertebrate Genomes: the Parvoviridae and Circoviridae Are More than 40 to 50 Million Years Old”Journal of Virology84 (23): 12458–12462. doi:10.1128/JVI.01789-10PMC 2976387PMID 20861255.
  91. ^ Flores, Ricardo; Di Serio, Francesco; Hernández, Carmen (February 1997). “Viroids: The Noncoding Genomes”. Seminars in Virology8 (1): 65–73. doi:10.1006/smvy.1997.0107.
  92. ^ Zonneveld, B.J.M. (2010). “New Record Holders for Maximum Genome Size in Eudicots and Monocots”. Journal of Botany2010: 1–4. doi:10.1155/2010/527357.
  93. ^ Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (April 2002). “A draft sequence of the rice genome (Oryza sativa L. ssp. indica)”. Science296 (5565): 79–92. Bibcode:2002Sci…296…79Ydoi:10.1126/science.1068037PMID 11935017.
  94. ^ Perez-Iratxeta C, Palidwor G, Andrade-Navarro MA (December 2007). “Towards completion of the Earth’s proteome”EMBO Reports8 (12): 1135–1141. doi:10.1038/sj.embor.7401117PMC 2267224PMID 18059312.
  95. ^ Kauffman SA (1969). “Metabolic stability and epigenesis in randomly constructed genetic nets”. Journal of Theoretical Biology. Elsevier. 22 (3): 437–467. doi:10.1016/0022-5193(69)90015-0PMID 5803332.
  96. ^ Schuler GD, Boguski MS, Stewart EA, Stein LD, Gyapay G, Rice K, White RE, Rodriguez-Tomé P, Aggarwal A, Bajorek E, Bentolila S, Birren BB, Butler A, Castle AB, Chiannilkulchai N, Chu A, Clee C, Cowles S, Day PJ, Dibling T, Drouot N, Dunham I, Duprat S, East C, Edwards C, Fan JB, Fang N, Fizames C, Garrett C, Green L, Hadley D, Harris M, Harrison P, Brady S, Hicks A, Holloway E, Hui L, Hussain S, Louis-Dit-Sully C, Ma J, MacGilvery A, Mader C, Maratukulam A, Matise TC, McKusick KB, Morissette J, Mungall A, Muselet D, Nusbaum HC, Page DC, Peck A, Perkins S, Piercy M, Qin F, Quackenbush J, Ranby S, Reif T, Rozen S, Sanders C, She X, Silva J, Slonim DK, Soderlund C, Sun WL, Tabar P, Thangarajah T, Vega-Czarny N, Vollrath D, Voyticky S, Wilmer T, Wu X, Adams MD, Auffray C, Walter NA, Brandon R, Dehejia A, Goodfellow PN, Houlgatte R, Hudson JR, Ide SE, Iorio KR, Lee WY, Seki N, Nagase T, Ishikawa K, Nomura N, Phillips C, Polymeropoulos MH, Sandusky M, Schmitt K, Berry R, Swanson K, Torres R, Venter JC, Sikela JM, Beckmann JS, Weissenbach J, Myers RM, Cox DR, James MR, Bentley D, Deloukas P, Lander ES, Hudson TJ (October 1996). “A gene map of the human genome”. Science274(5287): 540–546. Bibcode:1996Sci…274..540Sdoi:10.1126/science.274.5287.540PMID 8849440.
  97. ^ Chi, Kelly Rae (17 August 2016). “The dark side of the human genome”. Nature538 (7624): 275–277. Bibcode:2016Natur.538..275Cdoi:10.1038/538275aPMID 27734873.
  98. Jump up to:a b Claverie JM (September 2005). “Fewer genes, more noncoding RNA”. Science309 (5740): 1529–1530. Bibcode:2005Sci…309.1529Cdoi:10.1126/science.1116800PMID 16141064.
  99. ^ Carninci P, Hayashizaki Y (April 2007). “Noncoding RNA transcription beyond annotated genes”. Current Opinion in Genetics & Development17 (2): 139–144. doi:10.1016/j.gde.2007.02.008PMID 17317145.
  100. Jump up to:a b Hutchison, Clyde A.; Chuang, Ray-Yuan; Noskov, Vladimir N.; Assad-Garcia, Nacyra; Deerinck, Thomas J.; Ellisman, Mark H.; Gill, John; Kannan, Krishna; Karas, Bogumil J. (25 March 2016). “Design and synthesis of a minimal bacterial genome”. Science351 (6280): aad6253. Bibcode:2016Sci…351…..Hdoi:10.1126/science.aad6253ISSN 0036-8075PMID 27013737.
  101. ^ Glass, J. I.; Assad-Garcia, N.; Alperovich, N.; Yooseph, S.; Lewis, M.R.; Maruf, M.; Hutchison, C.A.; Smith, H.O.; Venter, J.C. (3 January 2006). “Essential genes of a minimal bacterium”Proceedings of the National Academy of Sciences103 (2): 425–430. Bibcode:2006PNAS..103..425Gdoi:10.1073/pnas.0510013103PMC 1324956PMID 16407165.
  102. ^ Gerdes, SY; Scholle, MD; Campbell, JW; Balázsi, G; Ravasz, E; Daugherty, MD; Somera, AL; Kyrpides, NC; Anderson, I; Gelfand, MS; Bhattacharya, A; Kapatral, V; D’Souza, M; Baev, MV; Grechkin, Y; Mseeh, F; Fonstein, MY; Overbeek, R; Barabási, AL; Oltvai, ZN; Osterman, AL (October 2003). “Experimental determination and system level analysis of essential genes in Escherichia coli MG1655”Journal of Bacteriology185 (19): 5673–5684. doi:10.1128/jb.185.19.5673-5684.2003PMC 193955PMID 13129938.
  103. ^ Baba, T; Ara, T; Hasegawa, M; Takai, Y; Okumura, Y; Baba, M; Datsenko, KA; Tomita, M; Wanner, BL; Mori, H (2006). “Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection”Molecular Systems Biology2: 2006.0008. doi:10.1038/msb4100050PMC 1681482PMID 16738554.
  104. Jump up to:a b Juhas, M; Reuß, DR; Zhu, B; Commichau, FM (November 2014). “Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering”. Microbiology160 (Pt 11): 2341–2351. doi:10.1099/mic.0.079376-0PMID 25092907.
  105. ^ Tu, Z; Wang, L; Xu, M; Zhou, X; Chen, T; Sun, F (21 February 2006). “Further understanding human disease genes by comparing with housekeeping genes and other genes”BMC Genomics7: 31. doi:10.1186/1471-2164-7-31PMC 1397819PMID 16504025
  106. ^ Georgi, B; Voight, BF; Bućan, M (May 2013). “From mouse to human: evolutionary genomics analysis of human orthologs of essential genes”PLOS Genetics9 (5): e1003484. doi:10.1371/journal.pgen.1003484PMC 3649967PMID 23675308
  107. ^ Eisenberg, E; Levanon, EY (October 2013). “Human housekeeping genes, revisited”. Trends in Genetics29 (10): 569–574. doi:10.1016/j.tig.2013.05.010PMID 23810203.
  108. ^ Amsterdam, A; Hopkins, N (September 2006). “Mutagenesis strategies in zebrafish for identifying genes involved in development and disease”. Trends in Genetics22 (9): 473–478. doi:10.1016/j.tig.2006.06.011PMID 16844256.
  109. ^ “About the HGNC”HGNC Database of Human Gene Names. HUGO Gene Nomenclature Committee. Retrieved 14 May 2015.
  110. ^ Stanley N. Cohen; Annie C.Y. Chang (1 May 1973). “Recircularization and Autonomous Replication of a Sheared R-Factor DNA Segment in Escherichia coli Transformants”PNAS70 (5): 1293–1297. Bibcode:1973PNAS…70.1293Cdoi:10.1073/pnas.70.5.1293PMC 433482PMID 4576014.
  111. ^ Esvelt, KM.; Wang, HH. (2013). “Genome-scale engineering for systems and synthetic biology”Mol Syst Biol9 (1): 641. doi:10.1038/msb.2012.66PMC 3564264PMID 23340847.
  112. ^ Tan, WS.; Carlson, DF.; Walton, MW.; Fahrenkrug, SC.; Hackett, PB. (2012). “Precision editing of large animal genomes”Adv Genet. Advances in Genetics. 80: 37–97. doi:10.1016/B978-0-12-404742-6.00002-8ISBN 9780124047426PMC 3683964PMID 23084873.
  113. ^ Puchta, H.; Fauser, F. (2013). “Gene targeting in plants: 25 years later”. Int. J. Dev. Biol57 (6–7–8): 629–637. doi:10.1387/ijdb.130194hpPMID 24166445.
  114. ^ Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013). “Genome engineering using the CRISPR-Cas9 system”Nat Protoc8 (11): 2281–308. doi:10.1038/nprot.2013.143PMC 3969860PMID 24157548.
  115. ^ Kittleson, Joshua (2012). “Successes and failures in modular genetic engineering”. Current Opinion in Chemical Biology16 (3–4): 329–336. doi:10.1016/j.cbpa.2012.06.009PMID 22818777.
  116. ^ Berg, P.; Mertz, J.E. (2010). “Personal Reflections on the Origins and Emergence of Recombinant DNA Technology”Genetics184 (1): 9–17. doi:10.1534/genetics.109.112144PMC 2815933PMID 20061565.
  117. ^ Austin, Christopher P.; Battey, James F.; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S.; Dove, William F.; Duyk, Geoffrey; Dymecki, Susan (September 2004). “The Knockout Mouse Project”Nature Genetics36 (9): 921–924. doi:10.1038/ng0904-921ISSN 1061-4036PMC 2716027PMID 15340423.
  118. ^ Guan, Chunmei; Ye, Chao; Yang, Xiaomei; Gao, Jiangang (2010). “A review of current large-scale mouse knockout efforts”. Genesis48 (2): 73–85. doi:10.1002/dvg.20594PMID 20095055.
  119. ^ Deng C (2007). “In celebration of Dr. Mario R. Capecchi’s Nobel Prize”International Journal of Biological Sciences3 (7): 417–419. doi:10.7150/ijbs.3.417PMC 2043165PMID 17998949.


Main textbook

showReferenced chapters of Molecular Biology of the Cell

Further reading[edit]

External links[edit]

showvteGene expression
Authority control GND4128987-0NDL00563885


Navigation menu




In other projects



Edit links




  1. Do you have a spam issue on this site; I also am a blogger, and I was wondering your situation; many of us have created some nice procedures and we are looking to exchange solutions with others, be sure to shoot me an e-mail if interested.


  2. I have been browsing online greater than three hours as of late, yet I by no means discovered any attention-grabbing article like yours. It is lovely value sufficient for me. Personally, if all website owners and bloggers made good content material as you did, the web will probably be much more helpful than ever before.


  3. Online Pharmacy Without Prescription coxelody [url=]Cialis[/url] GliliveTeelo Ceclor Or Keflex iodits Buy Cialis vowsattasp Cialis Viagra Hypertension


  4. I used to be very happy to seek out this web-site.I wanted to thanks to your time for this excellent read!! I undoubtedly enjoying every little little bit of it and I’ve you bookmarked to take a look at new stuff you weblog post.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s